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Fig. 1. We propose the use of cheap, small off-the-shelf distance sensors (far left) for a variety of computational imaging and vision tasks, and demonstrate
and evaluate their capabilities in emerging sensing applications like (from left to right) material classification, non-line-of-sight tracking, and depth imaging.

Time-correlated imaging is an emerging sensing modality that has been
shown to enable promising application scenarios, including lidar ranging,
fluorescence lifetime imaging, and even non-line-of-sight sensing. A leading
technology for obtaining time-correlated light measurements are single-
photon avalanche diodes (SPADs), which are extremely sensitive and capable
of temporal resolution on the order of tens of picoseconds. However, the
rare and expensive optical setups used by researchers have so far prohibited
these novel sensing techniques from entering the mass market. Fortunately,
SPADs also exist in a radically cheaper and more power-efficient version that
has been widely deployed as proximity sensors in mobile devices for almost a
decade. These commodity SPAD sensors can be obtained at a mere few cents
per detector pixel. However, their inferior data quality and severe technical
drawbacks compared to their high-end counterparts necessitate the use of
additional optics and suitable processing algorithms. In this paper, we adopt
an existing evaluation platform for commodity SPAD sensors, and modify
it to unlock time-of-flight (ToF) histogramming and hence computational
imaging. Based on this platform, we develop and demonstrate a family of
hardware/software systems that, for the first time, implement applications
that had so far been limited to significantly more advanced, higher-priced
setups: direct ToF depth imaging, non-line-of-sight object tracking, and
material classification.
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1 INTRODUCTION
Time-correlated imaging, or the recording of the optical response
of a scene to transient illumination, allows to analyze the temporal
dimension of light transport, a feature that is not accessible in pure
intensity imaging. Time-correlated optical measurements have es-
tablished themselves as a valuable source of information for scene
understanding [Rablau 2019] and analysis in computer graphics,
computer vision, scientific imaging, healthcare and life sciences
(e.g., fluorescence lifetime imaging), consumer electronics, defense,
robotics and autonomous driving, and even locating hidden objects
outside the direct line of sight, or “looking around a corner” [Velten
et al. 2012].

The approaches available for recording time-correlated measure-
ments are rich and varied, but most require bulky and expensive
hardware and are too fragile to be used outside of lab settings.
A notable exception is the emerging technology of single-photon
avalanche diodes (SPADs). SPADs are single-photon sensitive de-
vices [Zappa et al. 2007] that can be fabricated in CMOS technol-
ogy [Charbon 2008] and, when combined with precise time-tagging,
provide time-resolved images at picosecond resolution [Gariepy
et al. 2015]. As direct time-of-flight sensors, SPADs have become the
workhorse for a wide range of emerging fields [Altmann et al. 2018;
Richardson et al. 2009], such as pulsed light detection and ranging
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Fig. 2. Top: Setup schematic for depth andNLOS imaging: Two plano-convex
lenses collimate the light emitted from the VL53L1X’s light source and the
SPAD sensor’s field of view. Two rotatable mirrors allow deflection of the
beam. Bottom: Lenses and galvanometer scanner pair in front of the sensor
and light source in the lab.

(lidar) in autonomous vehicles [Schwarz 2010], non-line-of-sight
(NLOS) sensing [Chen et al. 2020; Heide et al. 2019; Lindell et al. 2019;
Liu et al. 2019], as well as fluorescence lifetime imaging microscopy
(FLIM) [Henderson et al. 2018] and extremely high dynamic range
imaging [Ingle et al. 2019]. The sensors employed in all these works
are custom-made research-grade devices that need to be combined
with an ultrafast laser source, which is bulky and expensive (at least
tens of thousands of US Dollars in total) and therefore out of reach
for most real-life applications.
In parallel to the research on implementing novel applications

using SPADS, however, the technology has already been fully de-
mocratized: small form-factor SPAD-based ranging systems are
available at a price of USD 3, that integrate a pulsed laser source
and a time-correlated single photon counter (TCSPC) along with an
I2C interface. Billions of consumer-grade mobile devices use them
as low-cost proximity sensors [Rangwala 2020; STMicroelectron-
ics 2019; Yoshida 2018], for instance to turn off the display when
the phone is placed on the ear [Baxter 2015]. In this work, we in-
vestigate the suitability of such extremely cheap SPAD sensors for
implementing computational imaging applications such as the ones
discussed above. This is not a given since, despite the shared core
technology, consumer-grade SPADs differ significantly from their
high-end counterparts in terms of their feature set and performance.
In lab settings without mass-market economies in mind, or in high-
end industrial prototyping (robotics, autonomous mobility), cost is
a far lesser concern and each of the components can be selected
for optimum performance. Where research systems offer thousands
of histogram bins with low temporal jitter on the order of a few
tens of picoseconds, and sometimes detector arrays with relatively

Fig. 3. Left: The VL53L1X time-of-flight sensor module by STMicroelectron-
ics on a commercially available breakout board. Center: Profile of collimated
laser beam at 0.4m from the lens. Right: Point spread function of the full
system shown in Figure 2, obtained using a small retroreflective target.

high spatial resolutions [Henderson et al. 2018; Liu et al. 2019], con-
sumer SPADs offer single-point or low resolution measurements
with coarse temporal binning. Equally severe constraints are im-
posed by operation safety (consumer devices must be safe under all
imaginable circumstances, even when pointed directly at the user’s
eye as is often the case with cell phones), and the tight power bud-
get of mobile devices. Consumer SPAD systems therefore operate
their lasers at the very minimum of what is required for close-range
sensing, which is not enough for less light-efficient scenarios like
non-line-of-sight sensing. On the API side, consumer SPADs are
highly integrated devices that cannot be synchronized to external
devices, and by default output heavily digested range data instead
of raw timestamped photon events. This renders them unsuitable
for most computational imaging applications.

The goal of this study is to implement typical application scenar-
ios like range imaging, material classification, and object tracking
around a corner, on a popular type of consumer SPAD (STMicro-
electronics VL53L1X), and to identify possible avenues to improve
the performance of such systems. In particular, these are our contri-
butions:
• We propose to use an off-the-shelf sensor evaluation kit as a low-
cost alternative to high-end SPAD sensors, and equip the board
with a custom firmware to output raw photon count histograms.

• We introduce hardware add-ons such as collimating optics and
galvanometer scanners to meet the needs of a selection of key
applications for time-resolved imaging. We further propose re-
construction pipelines based on inverse filtering, deep learning,
and other computational sensing paradigms that are capable
of handling the low-resolution time-tagged measurements pro-
duced by our system.

• We validate the proposed platform for some of the most iconic
application modes of time-resolved imaging, namely non-line-of-
sight object tracking, material classification, and depth imaging.

• We propose cost-neutral feature additions to the sensor hardware
that would greatly improve their interfacing to external hard-
ware, and their suitability as a general-purpose sensing platform
for time-resolved light transport.
At a total system cost of USD 150 including all parts, our pro-

totype system in the most expensive configuration is two to three
orders of magnitude lower in cost than existing time-tagged research
instrumentation. Software and data are provided as supplementary
material. We hope that our work will help unlock a wide range of
fascinating sensing applications on hardware that millions of users
are already carrying in their pockets.
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2 RELATED WORK
This paper builds upon a substantial body of prior art, both from a
technological and an application-centered point of view.

Single-photon avalanche diodes. SPADs are emerging as a promis-
ing mass-market sensor technology capable of detecting electron-
hole pairs generated by single photons incident on the sensor. When
combined with time-correlation electronics, these sensors allow for
accurate time-tagging of such individual photon detection events, or
time-correlated single-photon counting (TCSPC). SPADs are reverse-
biased photodiodes that are operated well above their breakdown
voltage [Burri et al. 2016]. Every photon incident on a SPAD has a
probability of triggering an electron avalanche, the so-called photon
detection efficiency (PDE). The resulting avalanche event is time-
stamped, providing a temporal resolution of tens to hundreds of
picoseconds. Compared to other single-photon photodetectors such
as photomultiplier tubes and multichannel plates, SPADs are small
and versatile, and are able to work at fast rates under ambient light-
ing conditions without requiring a high bias voltage. SPADs and
avalanche photodiodes (APDs) have been successfully employed
for a wide range of TCSPC applications [O’Connor 2012] in optical
telecommunication, fluorescence lifetime imaging, and remote sens-
ing systems (e.g., LIDAR). While SPAD sensors can be fabricated
in CMOS technology [Burri et al. 2016], research instrumentation
has been prohibitively costly at tens of thousands of USD, outside
the range of most practitioners and in particular computer vision
and graphics researchers without optical laboratories. In this work,
we introduce a scalable research platform for time-tagged photon
counting that is affordable and easy to use, since it is based on
smartphone proximity sensors.

Time-of-flight (ToF), transient and depth imaging. Transient imag-
ing captures the impulse response of light transport in a scene,
thereby completely characterizing light transport as a linear time-
invariant system. The idea of transient imaging was originally pro-
posed by Abramson [1978] as “light-in-flight recording”, using a
holographic technique to reconstruct the propagation of a picosec-
ond light pulse over time. With recent developments in ultrafast
sensing technology, there exists now a variety of hardware options
for transient imaging, turning it into an emerging imaging modality
with manifold applications in computer graphics and computer vi-
sion [Jarabo et al. 2017]. Transient images and related time-of-flight
techniques have been used for fast and robust depth sensing and
foreground-background segmentation [Lindell et al. 2018; O’Toole
et al. 2014; Peters et al. 2015] where they often outperform passive
methods on scenes with complex geometry and untextured regions
[Meuleman et al. 2020; Smolyanskiy et al. 2018], while not requiring
a wide stereo baseline. In addition, the availability of time-of-flight
histogram data allows for insightful visualization of light trans-
port [Velten et al. 2013], material estimation [Naik et al. 2011; Su
et al. 2016], fluorescence lifetime microscopy [Zickus et al. 2020],
and even the reconstruction of objects beyond the direct line of
sight.
Technologies used for time-resolved imaging differ widely in cost as
well as individual advantages and drawbacks. At the high end of the
price spectrum, streak cameras offer very high temporal resolution,

but require additional instrumentation and computation for imaging
two-dimensional scenes [Gao et al. 2014; Liang et al. 2017; Velten
et al. 2013]. At much lower prices, amplitude modulated continuous
wave (AMCW) ToF sensors, specifically intended for depth imag-
ing at relatively high spatial resolutions, have been shown to be
suitable for time-resolved imaging [Heide et al. 2013; Kadambi et al.
2013]. For a more detailed comparison of this work with amplitude
modulated ToF sensors, see Section 7.

Non-line-of-sight (NLOS) tracking. Conventional cameras capture
scenes that are in their direct line of sight, but computational sensing
techniques have been recently proposed to reconstruct objects that
are obscured from direct view, using secondary effects like indirect
reflections [Velten et al. 2012] or partial shadows [Bouman et al.
2017] as an information source. Such ability to see occluded parts
of the scene would have numerous obvious benefits in traffic safety,
search and rescue, healthcare (endoscopy), and defense, but has yet
to find its way into practical applications.While a large body of work
has been dedicated to the challenge of reconstructing detailed scene
geometry [Arellano et al. 2017; Buttafava et al. 2015; Grau Chopite
et al. 2020; Heide et al. 2019; Iseringhausen and Hullin 2020; Liu
et al. 2019; O’Toole et al. 2018; Tsai et al. 2019; Velten et al. 2012],
some applications do not require a full 3D reconstruction. Often,
it could be sufficient to be able to detect objects and track their
motion. Thanks to a greatly reduced number of degrees of freedom,
this problem can be addressed with less detailed input data and
even steady-state (intensity, no time of flight) input images under
passive [Bouman et al. 2017] or active [Chen et al. 2019; Klein et al.
2016] illumination, and it has led to the first industry demonstrators
to integrate robust non-line-of-sight sensing technology [Scheiner
et al. 2020]. Nonetheless, with an expensive bill of components, these
demonstrators are unlikely to converge to mass-market products.
To our knowledge, this work marks the first reported instance of
using low-budget SPAD sensors for non-line-of-sight tracking.

Material classification. Indoor and outdoor scenes for robotic or
scene understanding tasks almost always contain a diverse set of
materials. Being able to robustly identify materials can be bene-
ficial in many computer vision tasks such as acquisition, object
recognition and segmentation. Classifying materials based on opti-
cal measurements is still a largely unsolved problem in computer
vision, as a result of the ambiguity in appearance measurements.
For example, polystyrene foam and white paper can appear very
similar in conventional intensity RGB images, which makes ma-
terial classification challenging based on their visual appearances.
However, the interaction of light with many materials gives rise
to a unique temporal point spread function (TPSF), which can be
resolved with time-correlated detectors. A recent line of work [Su
et al. 2016; Tanaka et al. 2017] proposes classification methods that
use temporally resolved measurements to identify the materials via
subsurface scattering. Comparing to reflectance-based methods that
rely on single-view RGB images [Caputo et al. 2005; Liu et al. 2010;
Varma and Zisserman 2008], temporally-resolved approaches are
more robust to changes in illumination, and they are not as easily
fooled by replicas such as printed pictures of the target materials.
In this work, we demonstrate that it is, in fact, possible to achieve
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extremely reliable distinction between five whitish materials using
a cellphone-class SPAD sensor.

3 SYSTEM DESCRIPTION
The centerpiece of our system is the VL53L1X time-of-flight sensor
module by STMicroelectronics. The 12-pin package, priced around
USD 3 for large volumes, has a footprint of 15mm2 and integrates a
940 nm light source and a 16 × 16 SPAD array sensor with a field
of view of 27◦ imaged by a miniature lens. Ambient light influx is
reduced by an appropriate filter. From this device, we obtain 24-bin
histograms of time-of-flight data with a bin width of 1.3 ns, thus
spanning a range of ca. 4.7 meters from the sensor in direct view. The
data can be read as one combined measurement from the sensor as
a whole, or from a region of interest (ROI) that can be any rectangle
of sensor pixels with a minimum size of 4×4. Read-out of individual
pixels is not possible.

For our prototype, we rely on the sensor evaluation kit P-NUCLEO-
53L1A1 which adds a 32-bit microcontroller and USB interface. The
system hosts up to three sensor units, one premounted and two
more on satellite boards that connect to pin headers to either side
of the main sensor. The stock firmware reads preprocessed range
data from the sensor, and forwards it to the host via a virtual serial
port. We replace it with a custom firmware that reads and forwards
raw photon count histograms.
For some of the applications demonstrated in this paper, we use

additional optical equipment for increased flexibility of the system.
Addition 1: Glasses. The sensor by default is configured for weakly

directional forward sensing. For some purposes, it is more desirable
to work with narrower illumination and viewing beams. We equip
the sensor with a pair of small plano-convex lenses (𝑓 = 6mm, ◦ =

3mm) mounted at an adjustable distance from the exit/entrance
apertures to fine-tune collimation (Figure 2). Using a bare image
sensor placed at roughly 40 cm from the emitter, we characterize
the profile of the laser beam as shown in Figure 2 (top right). It is
clearly visible that the emitter employs four laser diodes arranged
in an arc shape.
Addition 2: Galvo scanners. With the illumination and sensing

beams collimated through the lens pair, we mounted a pair of gal-
vanometer scanners with hot mirrors to scan the sensing path in
two angular dimensions (Figure 2). We used the cheapest unbranded
product “20kpps Laser Galvanometer Set” that is available through
the most common global sales platforms, and equipped it with larger
infrared mirrors and a custom 3D-printed mount. An Arduino micro-
controller board provides the analog input signals for these scanners.

Being able to control the sensing beam like this, we characterized
the system’s point spread function by using a small retroreflective
target (Figure 3, right).

4 MATERIAL CLASSIFICATION
We use the VL53L1X to classify different materials based on their
temporal and spatial response to the illumination emitted by the
device. When placing the sensor right onto the surface of a material,
the infrared light from the VL53L1X light source penetrates the ma-
terial, is scattered inside, and part of it is reflected back to the SPAD
sensor as illustrated in Figure 4. Depending on the structure of the

Fig. 4. For the material measurement, the VL53L1X is placed in direct con-
tact of the sample. The active illumination penetrates the material and is
scattered inside as illustrated on the right. Depending on the material’s
structure, the signal measured by the SPAD sensor varies spatially and
temporally.

material, the signal measured by the sensor can vary temporally and
spatially. By training a neural network, characteristics of different
materials can be learned and they can later be distinguished by
holding the sensor to an object.
For the material classification, we use contact measurements

without any additional equipment. This makes this application par-
ticularly suitable for usage in small confined spaces, as well as for
scenarios where the sensor is integrated into (consumer) devices
like smartphones or cameras. A possible use case could be the dis-
tinction between a real finger and a dummy to improve the security
of fingerprint sensors.

For the measurement, we read out the whole sensor area in ROIs
of 4 × 4 pixels, which yields 16 independent ROI measurements
arranged on the sensor in a 4 by 4 grid. This configuration allows
the maximum number of independent ROIs on the sensor and con-
stitutes a good compromise between captured information and ac-
quisition time.
We record data for five different materials — foam, paper, skin,

towel, and wax — by holding the sensor to the material 40 times in
different positions and orientations and recording 25 histograms
on all 16 ROIs. This procedure takes about 10 minutes per material.
For evaluation purposes, we repeated the measurement for each
material in the presence of ambient illumination in the form of
a 100W incandescent lighbulb that was placed in a distance of
∼30-40 cm from the sample, as well as for different color variants of
each material (lightgreen foam, colored paper, another person’s skin,
darkblue towel and red wax). Due to the low temporal resolution of
the SPAD sensor and the very short range of a few millimeters, most
of the information is contained in the first few time bins of each
histogram. We truncate the measurements to 16 time bins from the
original 24, then reshape the data to matrices of size 16×16with one
spatial and one temporal dimension. Renditions of this measurement
data for the five different materials are shown in Figure 5.
A two-dimensional principal component analysis of the data

shows a certain clustering of the materials - almost independent of
the presence of ambient light -, but poor separation between the
categories. The PCA and the first two eigenvectors are shown in
Figure 6.
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Fig. 5. Measurements for five different materials. Top: Photograph of material. Center: SPAD histogram data averaged over 1000 measurements. Bottom:
Deviation of each material from the mean of all materials. Center and bottom: Since no visible information is contained in later time bins, these plots only show
bins 1 to 5.
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Fig. 6. Top: Two-dimensional PCA of the material data with and without
ambient light (AL). Bottom: The first two eigenvectors with their correspond-
ing eigenvalues, reshaped to the input data format. As in Figure 5, only the
first five time bins are shown.

In order to classify the different materials, we train a convolu-
tional neural network (CNN) with two 3 × 3 convolution layers
and two fully connected layers on data from 35 of the 40 collected
positions while 5 serve as test data. We perform and evaluate the
training for different constellations of data for the five materials:
without ambient light, with added ambient light, and with added
color variants for each material. To ensure comparability in the
results, the total number of measurements in the training was kept

(a) w/o ambient light (b) w/ ambient light (c) w/ color variants
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Fig. 7. Confusion matrices for the classification of five material classes on a
test dataset. (a) Measurements without ambient light, (b) measurements
with and without ambient light in the training and test datasets, (c) data
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evaluation of classification of all color variants treated as separate classes.
Numbers are the absolute count of data points in the test sets. The num-
ber of training data samples was kept consistent across (a)-(c) for better
comparability.

consistent - results are shown in Table 1 and Figure 7(a)-(c). Ad-
ditionally, we evaluated the performance for all material variants
separately, as shown in Figure 7(d).
While the addition of ambient light has almost no effect on the

performance, adding materials with different reflection properties
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Table 1. Classification accuracy on the test dataset with and without ambi-
ent light, as well as with color variants of each material.

foam paper skin towel wax

w/o ambient light 99.2 % 92.0 % 98.4 % 97.6 % 100.00 %
w/ ambient light 97.6 % 94.4 % 95.6 % 87.6 % 100.00 %
w/ color variants 87.6 % 81.6 % 88.8 % 71.2 % 96.00 %
w/ color variants
(2× training size) 99.6 % 97.6 % 97.2 % 95.2 % 100.00 %

(and slightly different structure) decreases the performance quality
which can, however, be almost completely avoided by adding more
training data (see Tab. 1). As can be seen in the confusion matrix
in Figure 7(d), especially paper, skin and towel are mostly confused
among the variants of one type of material.
While the results for training and testing on a single sensor are

very good and the classification performs very well even in a live
application where the sensor is held to different materials and the
classification runs at interactive rates (as demonstrated in the sup-
plemental video), it has to be considered that there is a certain
hardware variation between individual copies of the sensor and that
classification accuracy decreases significantly when performed on
a sensor instance that has not been used for the acquisition of the
training data. However, due to the relatively short time needed for
the acquisition of training data and the training itself, as well as the
individuality of potential use cases that probably require tailoring to
the particular situation and used materials, we do not consider this
to be a substantial drawback. Future work could focus on a general-
ization of the method that allows for the calibration of a particular
sensor instance in order to make the data consistent across different
devices.

5 TRACKING OBJECTS "AROUND THE CORNER"
Observing objects hidden from the direct line of sight is a common
application of time-resolved imagers. We show that the VL53L1X
can be used to track an object “around the corner” by illuminating
a wall facing the hidden area and recording the echoing light signal
that is reflected from the target object. To this end, we train a neural
network to recognize the target position from the SPAD data of four
measurements on the wall, as described in detail in the following
subsections.

5.1 Data Acquisition and Processing
We propose two possible setups for the non-line-of-sight tracking
task. In the first configuration, the bare light source and sensor
are pointed at the relay wall and the four corners of the SPAD
sensor are read out as ROIs of size 5 × 5 pixels (see Figure 8, left).
The second configuration employs the “glasses” and galvo-mirror
system described in section 3 to focus the illumination and SPAD
view to four points on the wall (Figure 8, right). This way, better
spatial separation between the probe positions can be achieved, and
the luminous efficacy - and therefore the signal-to-noise ratio in the
measurements - is increased.

A square-shaped piece of cardboard laminatedwith retroreflective
film serves as the target. It is placed facing the relay wall at different

positions in the hidden volume by a Universal Robots UR10 robotic
arm for optimal precision. We perform all experiments with a big
(50 cm× 50 cm) and a small (30 cm× 30 cm) target.

We record the SPAD signal for 800 random target positions with
10 histograms each while averaging two consecutive measurements
to mitigate intensity fluctuation in the data (training data acquisition
takes about 5 hours). In the configuration using the galvo-mirrors,
we additionally normalize the histogram by the total intensity col-
lected in the first five bins, which only contain signal caused by
light reflected back directly from the mirror system. This way, fluc-
tuations and deviations caused by internal factors of the sensor and
illumination system can be accurately compensated for.
Assuming a completely diffuse reflection of the illumination at

the relay wall, the light intensity falls off quadratically from thereon.
We correct for this effect by multiplying each bin content with
the square of the corresponding bin number in order to keep the
signal intensity of light reflected off the target consistent across the
whole measurement volume. This has shown to greatly improve the
reconstruction accuracy.

5.2 Position Reconstruction
Figure 9 shows an example measurement of four corners in the
“no mirror” setup for one target position, averaged over 30 mea-
surements to reduce noise. The direct peak from the wall is clearly
visible in all four histograms, while the indirect peak position is
not obvious to the naked eye. Due to the indirect peak being this
low, we propose to use a neural network to determine the position
of the target in the hidden space. Below, we outline four different
approaches to reconstruct the target position, three of which rely
on training a neural network, while the last is a ‘classical’ approach
that does not depend on previously recorded data.
1. Direct position prediction: We train a neural network (a mul-

tilayer perceptron with five hidden layers of size 50) to directly
predict the target position from the four histograms. It takes the
four histograms as input and reconstructs the coordinates of the
target from these.

2. Distance prediction and multilateration: This approach consists
of two stages. First, for each of the four probe points, its distance
to the target is estimated from the measured histogram. To do this,
an MLP with five hidden layers of size 16 and a final dense output
layer of size 1 is trained to yield the distance from the wall point
to the target from the histogram it takes as input. In this manner,
the distances of all four points on the wall to the target can be
predicted and used to multilaterate the target position from the
four wall points by solving a simple optimization problem using the
L-BFGS-B algorithm [Byrd et al. 1995].
3. Distance prediction and multilateration with histogram shift:

Before processing the histogram, we find the ‘direct peak’ that
corresponds to the reflection on the relay wall by calculating the
weighted mean (center of mass) of the histogram. We then shift the
histogram such that it starts with the center of the direct peak. For
sub-bin precision of this method, we upsample the histogram by a
factor of ten and resubsample it after the shift. Then we proceed as
described in approach 2. By making the histogram independent of
the distance between the SPAD sensor and the wall and thus training

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.



Low-Cost SPAD Sensing for Non-Line-Of-Sight Tracking, Material Classification and Depth Imaging • 1:7

Fig. 8. Two variants of NLOS tracking setting. Left: The SPAD package’s integrated light source
directly illuminates the wall in front of the occluded target. The histograms from the four corners of
the SPAD image are read out. Right: The illumination and SPAD view is collimated using the glasses
and deflected to four points on the wall using a mirror galvanometer.

Fig. 9. Histograms for all four corners measured with
the setting without mirrors for one target position, av-
eraged over 30 measurements. The peaks from the re-
flection on the wall are clearly visible.

Table 2. RMSE (root mean square error) of the reconstructed target position in all spatial dimensions for all methods and target configurations. We also
evaluate the reconstruction methods’ ability to generalize across target sizes, where the model is trained on data recorded with the big target (if training is
required) but tested on small target data, listed as “zero-shot” performance

Reconstruction Approach w/ Mirror Performance (RMSE) w/o Mirror Performance (RMSE)

Big target Small target Zero-shot Big target Small target Zero-shot

Direct Position 0.160 0.255 0.288 0.269 0.316 0.319
Distance-Multilateration 0.299 0.304 0.307 0.397 0.421 0.423
HistShift-Distance-Multilateration 0.304 0.316 0.312 0.413 0.453 0.445
Peak-Finding-Multilateration 0.498 0.516 0.516 0.508 0.535 0.535

the neural net to predict distances to the target from any point on the
wall, the tracking method becomes invariant to the positioning of
the SPAD relative to the relay wall: For multilateration, the position
of the probe points can be calculated from the positions of the four
direct peaks in the histograms (yielding the distance between the
SPAD and the wall) and the angles between the four beam directions,
which are a known system property.

4. Peak finding and multilateration. For a non-learning-based com-
parison, we determine the position of the indirect peak from the
latter part of the histogram (behind the direct peak) as the weighted
mean (center of mass) and use the distance between this and the
direct peak – converted from bin widths to spatial distances – for
multilateration of the target position. This approach does not require
any training and thus generalizes across target sizes and SPAD/wall
locations.
We evaluate all methods quantitatively and demonstrate their

“zero-shot” ability across the different target sizes. All configura-
tions and the corresponding reconstruction accuracies are shown
in Table 2.

As is expected due to the higher light efficiency, the setup using
lenses and mirrors consistently yields better results for all evaluated
methods. Since the estimation of the indirect peak with classical
methods is almost impossible, the ‘peak finding and multilateration’
approach, however, performs poorly in all configurations. The best
accuracy is achieved by training a neural net to directly predict
the target coordinates from the four given histograms, which we

Fig. 10. Distances in all spatial dimensions between the true and predicted
target position in the test dataset for the ’direct position prediction’ method.

therefore consider our proposed method. It performs particularly
well with the big target and mirrors, but also yields fair results with
the small target and even without the additional mirrors, but just
the bare VL53L1X device.

Predicting the distance between the probe points on the wall and
the target results in lower accuracy, but the performance drops only
slightly when additionally shifting the histogram to make the model
independent of the SPAD and wall position. All methods generalize
reasonably well across target sizes.
Figure 10 shows the full distribution of distances in all spatial

dimensions between the true and the predicted target position in the
test dataset for the proposedmethod, where 𝑥 denotes the dimension
to the left and right (parallel to the wall), 𝑦 is the distance from the
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3D view Back view Side view 3D view Back view Side view

Small targetBig target

True posi�on Proposed reconstruc�on method 'Peak finding and mul�latera�on' reconstruc�on

Fig. 11. Exemplary reconstructions for both target sizes. Shown are the true target position, the reconstruction using the proposed method (direct prediction of
position), and the peak finding and multilateration method for comparison. For better visibility, three different projections are shown for each target position:
a three-dimensional view, a view from behind the target in viewing direction to the wall, and a side view. The relay wall is located in the 𝑥-𝑧-plane at 𝑦 = 0.
Note that the red and the blue squares overlap almost completely in some plots which is why they appear as one purple square.

wall, and 𝑧 is the height from the floor. As visible in these plots, the
method performs especially well at predicting the distance from
the wall. The height from the floor apparently poses the greatest
challenge, which could be attributed to the spacing of the probe
points on the wall – due to the oblique projection of the sensor’s
field of view onto the wall, the left and right corner points are set
wider apart than the top from the bottom, providing a larger baseline
in 𝑥-direction. The height reconstruction accuracy also benefits the
most from the better light efficiency through the bigger target and
the collimating lenses.
A set of exemplary reconstructions with the proposed method

and the ‘peak finding and multilateration’ approach for comparison
is shown in Figure 11.

6 DEPTH IMAGING
The VL53L1X can yield a spatially resolved transient image by scan-
ning all possible 4× 4 ROIs on the 16× 16 pixel sensor, which yields
a 13 × 13 pixel measurement. This measurement, however, features
a substantial blur due to the overlapping ROIs and the poor optical
quality of the imaging lens. We therefore instead use the imager
setup shown in Figure 2. We rotate the mirrors to 128×128 positions
and capture a single all-sensor measurement per mirror position to
acquire the final transient data cube (acquisition time ∼30 minutes).
In order to correct for internal automatic intensity corrections of
the sensor, we normalize each pixel’s histogram by the amount of

light that is backscattered from the lens and its mounting which is
collected in the first five temporal bins of each measurement.
Additionally, using a small retroreflector we measure the point

spread function of the system as shown in Figure 3 (right) and
employ the fast deconvolution method by Krishnan and Fergus
[2009] to deconvolve each temporal slice of the data cube with the
measured PSF.

To keep intensity values relatively consistent to each other along
the full depth of the measurement volume, we compensate the
intensity falloff of the light travelling from the illuminated point in
the scene back to the sensor by multiplying each temporal bin 𝑛𝑖
with 𝑖2.

Figure 12 (a)–(c) shows three different scenes scanned with our
setup, where column (b) shows the raw data (each pixel’s intensity
summed over all time bins) and column (c) shows the data after
applying the above-mentioned corrections.

From the 128×128×19 ‘corrected’ data cube, we calculate detailed
depth maps in two different ways. In the first approach, we calculate
the weighted mean of the histogram to use as the given pixel’s depth
value 𝑑 as

𝑑 =

∑
𝑖 𝑖 · 𝑛𝑖∑
𝑖 𝑛𝑖

where 𝑛𝑖 is the intensity of bin 𝑖 . This way we achieve sub-bin accu-
racy in the depth estimation, allowing even smooth depth gradients
to be faithfully reproduced despite the large bin width that corre-
sponds to ~40 cm (or ~20 cm in depth due to forth and back travel of
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the light). Results are shown in Figure 12(d), where the second scene
has been recorded in the presence of ambient light (fluorescent
ceiling lights). While this method produces detailed depth images,
it lacks the ability to distinguish between fore- and background
contributions and, instead of separating them, yields a mixture of
both. This is especially relevant for highly specular surfaces that
contribute to the measurement with direct and indirect reflections,
where the latter take a longer time to arrive back at the sensor, as
well as depth edges of objects where pixels contain contributions
from the foreground object and the background. Additionally, this
method suffers from a bias in very near and very far distances due to
noise and secondary reflections dragging the center of mass of the
histogram to the center of the distribution. This effect is furthermore
dependent on the albedo of the imaged surface, as low peaks (in
comparison to background noise) in the histogram will have less
impact on the resulting mean than high peaks.
To mitigate these effects, we use a second approach where we

fit Gaussian functions to the histogram of each pixel. While this
method takes longer to compute, it yields sharper and more reliable
results as shown in Figure 12(e). Especially the highly specular
surface of the bucket in the third scene is much more accurately
reconstructed than with the first method. Note that both methods
produce false results for objects that are beyond the measurement
range, as visible in the second scene where the background behind
the shelves is too far away to be measured correctly.

TheGaussian fitmethod also allows a variety of active tweaking of
the produced depth images. For example, varying sensitivity to back-
or foreground can easily be implemented by changing the threshold
for which of two detected peaks to be used in the depth map. For
semitransparent objects, contributions from the object itself and the
background can be easily separated and selected independently of
each other.

A calibration measurement of the relation between the obtained
distance in units of bin numbers and the true distance is shown in
Figure 13 for both methods. From the fitted linear relation, distances
can be easily and accurately converted from bin numbers to meters
for each method. This, however, does not account for the above-
mentioned bias of the weighted mean-method towards differences
in surface albedo.
In order to analyze the VL53L1X’s response and robustness to

different parameters like ambient light, object reflectivity, object
distance and integration time, we imaged a scene with three flat
targets arranged at different depths from the sensor under different
ambient lighting conditions. Each target consists of five patches
that appear at different brightness at the 940 nm illumination of
the light source. Ambient light sources (a 940 nm LED and a 100W
incandescent light bulb) have been placed next to the VL53L1X, in
a distance of ca. 90 cm from the closest target, directly illuminating
the scene. Ambient daylight (third row) was indirectly illuminating
the target through an open window in a few meters distance from
the scene. An exemplary histogram for one pixel, averaged over
10 measurements each, with different sources of ambient light is
given in Figure 14: only the 100W incandescent light bulb and, to
some extent, daylight produce levels of ambient light that noticeably
impact the measured histograms. Especially the former results in
a decreased signal-to-noise ratio, which we observed to be more

severe with higher total influx of light on the sensor, indicating that
there is a general saturation threshold which was, however, not
reached in any of our experiments. The ambient light background
level is flat with no pile-up effects and can therefore be easily sub-
tracted from the signal, however leaving an increased level of noise
in the histograms. This has almost no effect on depth maps created
using the Gauss fit method, but does induce a bias towards larger
distances in the weighted mean method. Results for the whole scene
are shown in Figure 15: Column (a) shows the level of total bright-
ness for each measured pixel (integrated over all time bins) - note
that the scale in the last row is adjusted to the significantly higher
light intensity. Columns (b) and (c) show the depth maps of the
scene acquired with the aforementioned methods. As illustrated
in columns (d) and (e), the additional ambient light almost exclu-
sively affects the weighted mean method (and more, the brighter
the target), while in the Gauss fit depth maps, only slight deviations
around depth edges are visible.

Since the VL53L1X does not allow adjustment of the integration
time for each histogram, we acquired ten measurements for each
ambient light situation and analyzed the variance of the depth val-
ues acquired from them as plotted in columns (f) and (g). Again,
the weighted mean method shows larger variance as it is more sus-
ceptible to the increased noise level. In the Gauss fit depth maps,
there is almost no variance except at depth edges where peak fitting
is less precise due to contributions from back- and foreground. In
conclusion, there is no significant benefit from averaging multiple
histograms, and thus extended acquisition times, for this method.
Especially given these limitations, we consider the weighted mean
method a “quick-and-dirty” approach for a fast but noisy depth
image while the Gauss fit method provides the accurate results.

7 COMPARISON TO AMCW TOF
Due to their relatively low cost in comparison to high-end SPAD
setups, amplitude modulated continuous wave (AMCW) ToF devices
can be considered the closest alternative technology for the tasks
shown in this paper. We therefore provide a short overview of the
similarities and differences of the two technologies. In general, cheap
SPAD sensors like the VL53L1X are still orders of magnitude cheaper
than correlation-based ToF devices, making them especially suitable
for applications where multiple sensors are involved, as well as more
widespread in existing hardware where they are currently used, for
instance, as proximity sensors, while correlation ToF sensors are still
a rather specialized feature of a small number of device models. The
designated application of correlation ToF sensors is depth imaging,
which they are therefore best suited for, without requiring scanning
of the scene.While ToF sensors directly measure a single depth value
per pixel, SPAD sensors yield a response histogram for each pixel,
providing complex light transport information. Heide et al. [2013]
and Kadambi et al. [2013] have shown that such temporally resolved
information can be recorded using photonic mixer device (PMD)
measurements, which however requires hours of post processing
time. Even non-line-of-sight imaging with PMD sensors has been
shown by Heide et al. [2014]; their setup uses six 250mW laser
diodes as illumination sources, while the VL53L1X features an eye-
safe class 1 laser source.
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(a) Scene (b) Intensity (raw) (c) Intensity (deblurred) (d) Depth (weighted mean) (e) Depth (Gauss fit)

Fig. 12. Measurements taken with our scanning setup of three different real scenes shown in column (a). Column (b) shows the measured intensity of each
pixel as raw data. After applying several corrections to the data, we obtain clearer and less noisy data as shown in (c). From this data, depth maps are calculated
in two different ways, once as a weighted mean as shown in column (d), and once by fitting Gaussian distributions to the measured histograms (column (e)).
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Fig. 13. Calibration of the relation between bin number and true distance
for both methods used to determine the position of the depth peak.

Fig. 14. Exemplary histograms for a bright (left) and a dark (right) scene
pixel (after intensity calibration using the first five bins of the raw histogram)
for different ambient light scenarios (no ambient light, a 100W incandescent
lightbulb, a 230 lm white LED lightbulb, a 940 nm infrared LED, and indirect
daylight through an open window).

Su et al. [2016] have demonstrated material classification using
raw PMD measurements on similar material samples as used in our
paper, but from larger distances. Since in our approach the whole
device, including the sensor and light source, has such a small form
factor and can be placed directly on the material surface, spatial and

angular characteristics of the scattered light can be exploited. We
achievemuch better classification accuracies than Su et al. and do not
require a combination of multiple samples or manual segmentation
of the recorded data.

8 DISCUSSION AND FUTURE WORK
Although cheap SPADs deliver low-quality data and are narrowly
optimized for short-distance, single-point ranging applications, we
have been able to demonstrate that, by configuring these sensors to
output raw photon counts, they can be opened to a wider range of
computational sensing tasks. They are readily available in existing
consumer devices. With nonstandard programming, they could in-
stantly enable new features for a wide audience without the need for
additional hardware. Furthermore, the affordability of these chips
even qualifies them for use in larger quantities (arrays), which would
be prohibitively expensive for most research-grade SPAD systems.
The limitations of our prototype system (an off-the-shelf sensor

evaluation kit with custom firmware) are numerous. Although the
sensor can capture at 60 histograms per second, overhead from
API and serial communication reduces the effective capture rate to
about 9 histograms per second. Despite the relatively fine grid of
individual detector pixels, they cannot be read out individually but
only in blocks. We assume that the manufacturers want to ensure
a minimum photon count and hence signal-to-noise ratio. For our
purposes, however, the main effect is a reduced spatial resolution.
While the spatial resolution is potentially improvable with additional
hardware [Callenberg et al. 2021], the temporal resolution of 24
bins per histogram, too, is barely enough for most applications.
Additional temporal blur due to laser pulse length and detection
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(a) (b) (c) (d) (e) (f) (g)
Intensity Depth Depth Δ Depth Δ Depth Depth variance Depth variance

(weighted mean) (Gauss fit) (weighted mean) (Gauss fit) (weighted mean) (Gauss fit)

Fig. 15. Measurements of three targets in different depths, each with five patches of different reflectivity at the illumination wavelength, for different levels /
sources of ambient light (no ambient light, a 940 nm infrared LED, a 100W incandescent lightbulb, and indirect daylight through an open window). (a) Total
intensity integrated over all time bins - please note the adjusted colorscale in the last row. (b) Depth map acquired with the ’weighted mean’ method. (c)
Depth map acquired with the ’Gauss fit’ method. (d)/(e) Difference of the depth maps at different ambient light levels to the depth maps acquired without any
ambient light (first row). (f)/(g) Variance of the calculated depth over 10 measurements.

jitter further reduces the capability to discriminate components
with similar time of flight. Finally, the light output of our system
is limited by the strict requirements of low power consumption
and eye safety in mobile applications. Most experimental work on
non-line-of-sight sensing, on the other hand, uses optical powers
that are at least 3–4 orders of magnitude higher.

To facilitate the broader adoption of the proposed sensor platform,
we hope that the sensor manufacturer alleviates these limitations by
making minor technical modifications to the sensor design and its
API. An API change could be official support of histogram readout,
at the same level of configurability that is offered for the ranging
mode. An increased number of histogram bins, even if temporal
blur is the limiting factor and reduced photon count per bin leads to
a higher shot noise level, would enable computational recovery of a
higher-resolved signal. With the option of using region-of-interest
sizes down to a single pixel, it would be possible to obtain noisy
photon counts at full sensor resolution, which can be more useful for
many applications than pre-binned counts. In the future, we hope
that an even wider range of applications could be enabled by deeper
hardware modifications to the sensor. A major difference between
existing scientific time-tagged SPAD systems and the mass-market
proximity sensor used in this work is the ability of syncronized
triggered acquisition. The proposed system is fully free-running in
the sense that it does not facilitate external triggered acquisition
but only delivers repeated measurements using the internal source.
As such, the user can not “start” or “stop” measurements but only
read out continuous measurement streams. In the future, a trigger
interface could enable the triggering of the sensor by external light
sources, or vice versa. With changes only to the logic portion of the
chip (introducing a time-to-digital converter per pixel), full image

data could be captured. Finally, we envision a bare-sensor version
(without lens) that would allow for the use of higher-quality optics
for better image quality.

With the ongoing establishment of SPAD sensors as a technology
for time-resolved imaging, which is accompanied by the in-depth
analysis and modelling of these sensor devices [Hernandez et al.
2017], we believe that the data quality even from cheap and simple
sensors will improve rapidly and that they will open up affordable
research using SPAD sensors across disciplines.
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